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Overview

When Is learning worth the trouble?
Adapting in a fully observable world
Adapting in a partially observable world

Application to habitat management



When Is Learning Worth The Trouble?

o Adaptive Management
— different things to different people
— new information or situation
— stochastic dynamic optimization:
e action* = f(situation, information)
o trade-offs between present and future

e Learning vs doing:
— Is it worth acting suboptimally now to be able,
oy virtue of better info, to do better later?

— In general, what's the best mix of learning and
doing?




When Is Learning Worth The Trouble?




When Is Learning Worth The Trouble?

o Optimal control, Markov decision processes
— no learning or passive learning

e Dual control
— control engineers and a few ecologists
— ‘active adaptive mgt’

« Partially observable Markov decision processes
— Al and robotics
— similar spirit to dual control, but different math



Markov Decision Processes (MDPs):

Adapting in an Observable World

Dynamic + Stochastic: future = f(present, error)

Solution: o (x)=arg max[q;’ (x)+B82p,q; (xj)}

acA

*Process uncertainty, but not observational or
model uncertainty

*Nothing about gathering info on state variables*



MDPs: adapting in an observable world
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Partially Observable MDPs (POMDPSs):
Adapting in a Noisy World

Stochastic + dynamic + noisy

Belief becomes a state variable
— beliefs from priors and observations
— uncountably infinite

MDP: state = action
POMDP: belief 2> action

Solution: 6 (z) =arg maX[Zﬂiqi“ + ,B_Zﬂl.p;rj‘;qj}



POMDP Example
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When Is erosion monitoring worth the expense?



Problem Setup

When Is erosion monitoring worth the trouble?
States = {Good Road, Bad Road}
Decisions = {Do Nothing, Monitor, Treat}

Observations = {Good Road, Bad Road}
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Results for a 10-period problem

Ewolution of Value Function Over 10 Periods
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Results (cont)

Value Function at T-5 Under Different Observation Models
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POMDP Assessment

« POMDP may be a good tool for fisheries mgt
— partial observability is central in fisheries
— monitoring funds are scarce
— applicable to planning and behavioral models

e Drawbacks
— computation
— assumes (stochastic) dynamics are known

 Needto
— Increase state and decision space - heuristics
— try state augmentation for parameter uncertainty



Odds & Ends

POMDP and state augmentation (Fernandez-Rao)
Reinforcement Learning (Bertsekas)

Sequential hypothesis testing (Wald)

[Behavioral & cognitive modeling:

— neural basis of learning (Ishii et al.)

— behavioral psychology (Bearden)

— location choice (Lane) ]






POMDPs: Adapting in a Noisy World

« MDP ={S, P, A, W}
POMDP ={S, P, 6, R, A, W}
« MDP maps state - action
POMDP maps beliefs = action
 Unknown state variables,
known parameters*



POMDP Value Function

V () = max[z ng + Y prV (x|, 9)]}

where

7r. = probability of being in state i

g’ =1mmediate reward for taking action a In state i

p, = probability of moving from state i to state j
after taking action a

r,, = probability of observing &
after taking action @ and moving to state ;

T = function updating beliefs based on prior and &
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POMDP Value Function
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POMDP Value Function

Value Function at T-1, Last Decision Period

Here, 'maintain’ is the optimal action

Here, 'treat’ is the optimal action
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